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ABSTRACT

Two commercial poly(hexafluoropropene oxide) fluids were thermally pretreated at 343 °C in pure oxygen.

IR and NMR spectra indicate that this pretreatment was effective in removing hydrogen end-capped impurities.

Decrease in the quantity of volatile material produced during thermal oxidative decomposition and increase in the

thermal decomposition temperature indicated improvement in the stability of the fluids. However, this pretreatment

failed to render the fluids completely stable in oxidizing atmospheres at 316 °C in the presence of metal alloys.

INTRODUCTION

Perfluoropolyalkylethers (PFPAE) represent a class of liquid lubricants which have been used for space

applications for over 30 years (1), (2). In addition, these fluids are promising candidates for high temperature

aeronautical applications (3) - (5). One member of this class based on poly(hexafluoropropene oxide)(HFPO) has

been commercially available for many years (6).
Poly(HFPO) fluids have been studied extensively. These studies include: thermal stability (7), oxidative

stability (8), stability in the presence of Lewis acids (9) - (13), viscoelastic behavior (14), elastohydrodynamic
behavior (15), pressure-viscosity characteristics (16), time-of-flight secondary ion mass spectroscopy (17), (18),

electron beam (19) and x-ray damage (20), surface migration (21), and conformation (22) and tribochemical

degradation (12), (23), (24).
Thermal stability, in the absence of catalytic surfaces and oxygen, for poly(HFPO) fluids has been shown to

range from 356 to 376 °C depending on molecular weight (7). Although these stabilities are similar to other
members of the PFPAE class, they certainly do not represent the ultimate stability of the poly(H O) polymers. For

example, Gumprecht (25) has reported thermal stabilities for very pure research grade HFO polymers of 410 °C

using an isoteniscope. This 30 to 50 °C difference has usually been attributed to the presence of small amounts

(ppm) of thermally labile impurities. These impurities may take the form of hydrogen end-capped chains, peroxides,

carbonyl groups, or other arrangements not represented by the usual HFPO structure.
Of all of these impurities, hydrogen end-capped chains (-OCI-IFCF 3) are most prevalent. This group is

easily detected by Fourier Transform Infrared Spectroscopy (FT-IR) (18), proton Nuclear Magnetic Resonance

(NMR) (26), and Time-Off-Flight Secondary Ion Mass Spectroscopy (TOF-SIMS) (18). Typically, commercial

poly(HFPO) fluids contain from 1 to 5 ppm by weight of hydrogen. Although this appears to be a rather small

amount, it does represent approximately 1 to 3 percent of the chains, depending on molecular weight.
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Stabilization of poly(HFPO) fluids by removing these hydrogen end-capped chains appeared to be a viable

procedure. These chains can be removed by exhaustive fluorination or by simply treating the fluid at high tempera-

ture with oxygen (8). However, this earlier work (8) did not address the structural changes taking place during

pretreatment and only involved one batch of fluid (MLO-71-6).

Therefore, the objective of this study was to thermally pretreat two new batches of poly(HFPO) fluids in

oxygen in order to determine if pretreatment results in more stable fluids in the presence of catalytic surfaces for

currently produced materials. In addition, proton NMR, F 19NMR, and FT-IR were used to determine structural

changes. Improvement in stability was determined by measuring the volatiles produced during thermal-oxidative

degradation, and confirmed by measuring the thermal decomposition temperature (T d) with a tensimeter (7).

EXPERIMENTAL

Fluids
Two commercial poly(HFPO) fluids, 143AC (Batch 53538-29-2) and 143AB (Batch 42420-13), were

tested. Henceforth, these fluids will be referred to as AC and AB. The fluids had essentially an identical chemical

structure but differed in molecular weight and viscosity (Table 1, Footnote 2).

Thermal-Oxidative Pretreatment

Fluids (-28 to 31 g samples) were stabilized by heating in oxygen at 343°C for the time periods shown in

Table 1 (Tests 3, 4, 8, and 9). Duplicate pretreatments of the fluids were performed in order to assure adequate

oxygen supply and to demonstrate test repeatability (e.g. Tests 3 and 4). The pretreatment was conducted in two

steps (a and b) with data obtained after each step. Data are reported in Table I.

Thermal-Oxidative De m'adation Apparatus and Procedure

Success of the pretreatment was evaluated by conducting thermal-oxidative degradation tests with Ti(4A1,

4Mn) alloy in oxygen at 316 °C for 24 hr and comparing the results to those obtained for the untreated fluids.

The thermal-oxidative degradation apparatus appears in Fig. 1. In a typical experiment the fluid was

introduced into the degradation tube which was then evacuated and filled at a known temperature with oxygen.

Since the apparatus was calibrated and the fluid volume measured, the quantity of oxygen introduced was exactly

known. The degradation tube was then inserted into a box furnace for a specified time; throughout this exposure the

temperature was continuously recorded. After removal from the furnace the tube was allowed to cool to room

temperature, attached to the high-vacuum line, and opened. The liquid-nitrogen condensibles, which were volatile at

room temperature, were collected and weighed. The fluid residue itself was weighed and, in some cases, subjected

to viscosity determinations. The results are summarized in Table I.

Metal catalysts were in the form of disks, 9.5 mm o.d., 3.2 mm i.d., and 0.94 to 1.27 mm thick. Prior to

testing, the metal disks were polished using finishing paper followed by open-coated silicon carbide paper grades

400 and 500A. Subsequently, the disks were washed in trichlorotrifluoroethane (TCF), dried, weighed, and sus-

pended in the test apparatus. For more details on this test procedure, refer to Ref. 8.

Thermal Stability Apparatus and Procedure

Recently, a thermal stability apparatus (computerized tensimeter) was used to compare stabilities of a

variety of PFPAE fluids (7). This device is particularly sensitive to low impurity levels. Therefore, thermal decom-

position temperatures (Td) were determined for the fluids after treatment and compared to those of the untreated
fluids in order to determine the extent of improvement in thermal stability due to removal of impurities.

The tensimeter measures isothermal rates of pressure rise (during a 144 second time interval) from which

thermal decomposition temperatures (T d) (in the absence of oxygen and catalytic surfaces) are determined. Test

repeatability is +_2 °C. T d is defined as the temperature at which log dP/dt equals 0.3. A schematic representation of
this device is shown in Fig. 2. The device consists of a sample cell assembly, an oven, a temperature programmer,

temperature and pressure measuring components, and a data acquisition system. A detailed description of this

apparatus and procedure appears in Ref. 7. A typical example of the determination of T d of a poly(HFPO) fluid

appears in Fig. 3.

Proton Nuclear Magnetic Resonance (200 mHz) (NMR) spectra were obtained on 40 percent solutions of
the fluids in TCF. All chemical shifts are relative to TMS (tetrarnethylsilane) at 0 ppm. 19F NMR spectra



(188mHz) were obtained on 40 percent solutions of the fluids in C6F 6. Chemical shifts are reported relative to
fluorotrichloromethane at 0 ppm. Transmission FT-IR spectra were obtained on neat samples in a 1 mm cell. The

lower limit of detectability of carbon-hydrogen species is 1 ppm.

RESULTS AND DISCUSSION

AC Fluid

The AC fluid, as received, was unstable as indicated by the relatively large amount of volatile material

produced in the presence of Ti(4AI, 4Mn) alloy in oxygen at 316 °C in 24 hr (231 mg/g, Test 1), and the relatively

low thermal decomposition temperature (369 °C) compared to 410 °C observed for highly purified HFPO polymers

by Gumprecht using an identical technique. Therefore, duplicate samples of AC fluid were treated at 343 °C with

oxygen in an attempt to improve the stability (Tests 3 and 4). The "pretreatment" was conducted in two steps of 192
hr (a) and 96 hr (b), resulting in a total treatment time of 288 hr. The yield of volatile material after the fh'st step was

43.6 mg/g (Test 3a.) It should be noted that volatiles were not measured for test 4a after the 192 hr treatment.

However, the weight loss data for the duplicate samples (Tests 3a and 4a) corresponded closely, demonstrating good

repeatability. The low volatile production, 2 mg/g, following the 96 hr treatment (Test 3b and 4b), indicated

completeness of the operation. The stability of the fluid was then determined.

Exposure of the fluid to Ti(4Al, 4Mn) alloy at 316 °C (Test 5) resulted in production of 134 mg/g of

volatile material, a reduction of 42 percent compared to 230 mg/g for the untreated fluid (Test 1). This improvement

in stability is also conlrLrmed by the accompanying increase in T d from 369 to 382 °C. However, production of 134
mg/g of volatile material in Test 5 is surprisingly high when compared to MLO-71-6, a well studied poly(HFPO)

fluid which, after a similar pretreatment, was stable at 316 °C (4.5 mg/g) in the presence of titanium alloy and

oxygen (8). In addition, the T d of 382 °C is still well below the 410 °C observed by Gumprecht. Why is the treated
fluid not more stable?

At this stage, two potential explanations can be advanced: either the hydrogen terminated chains were not

completely removed or some other unusual and unstable structural arrangement was present in this fluid which was

not present in the MLO-71-6 fluid. IR and NMR spectra may help to distinguish between these two possibilities.

The IH NMR spectrum of the AC fluid as received is shown in Fig. 4 (274 scans). The presence of

hydrogen is evident by the doublet centered at 5.85 ppm. Following the treatment with oxygen at 343 °C for 288 hr,

no peaks in the 5.7 to 6.0 ppm region were observed after 752 scans (Fig. 5). A similar loss of C-H absorption bands

was observed in the 3000 cm "1region of the infrared spectra (Fig. 6). Based on this data, the treatment was effective

in the removal of hydrogen (or rather the removal of the hydrogen terminated chains) to less than the 1 ppm limit of

detectability. It should be noted that, based on the infrared absorption in other specific group regions before and

after treatment, no chemical change in the fluid itself occurred due to the treatment. This is further supported by the

lack of change in the viscosity data (Test 3b).

Figures 7 and 8 present 19F NMR spectra of the AC fluid as received, and after treatment, respectively.

These were compared to the 19F spectrum of MLO-71-6 (Fig. 9). The main difference between the AC fluid, both as
received and treated, and MLO-71-6 is the small, yet distinctive peak at -76.6 ppm. Based on 19F NMR spectral

study of experimental PFPAE fluids, this peak may be due to a linkage of the general structure

-OCF2CF(CF2ORf)OCF(CF3)CF2-. Specifically, the resonance at -76.6 ppm is due to the underlined CF 2 adjacent

to the CF having the -CF2OR f side chain. It should be mentioned that Kasai et al. (9) assigned a -77.0 ppm reso-

nance to FCO-CF2-O- and a signal at -76.5 ppm to CF3CO2H (27).
However, the signal at -76.6 ppm in the spectra of the AC fluids cannot be due to fluorines on a carbon

adjacent to a carbonyl group because of the absence of carbonyl absorption bands in the 1600-1800 cm "1 region of

the infrared spectrum (Fig. 10). This conclusion is supported by the absence of resonances in the 19F NMR spectra

at -12.7, 13.0 and 23.0 ppm due to the fluorine attached to the carbonyl carbon. (The other complex resonances in

these fluids, centered around -78 ppm, are due to -OCF(Q..F.3)- and -CF2-O groupings (28).
Therefore, the IR and NMR spectra indicate that the residual instability in the treated AC fluid is not due to

the presence of traces of hydrogen end-capped chains, but may be due to the presence of chains containing groups,

such as -OCFxCF(CF2OR.f)OCF(CF3)CF2-, which are not represented by the basic poly(HFPO) structural formula.

AB Fluid

The AB fluid was treated and analyzed similarly. The fluid, as received, was even less stable than the AC

fluid as indicated by the larger amount of volatile materials produced (277 mg/g) when exposed to the titanium alloy

in the presence of oxygen at 316 °C for 24 hr (Test 2) and by the lower T d (354 °C). Treatment of duplicate samples



of the AB fluid in two steps at 343 °C with oxygen over 353 hr, using the same procedure as that employed for the

AC fluid, gave similar weight losses, demonstrating good repeatability (Tests 8a and 9a). In the first 257 hr, 40.5

mg/g were obtained (Test 8a); in the subsequent 96 hr, only 2.0 mg/g were collected (Test 8b, 9b), indicating

completeness of the pretreatment.
Following the 353 hr treatment, the stability of the fluid in the presence of a catalytic surface was deter-

mined. The volatiles produced in the presence of the titanium alloy amounted to 55 mg/g (Test 10), a reduction of

80 percent compared to the untreated fluid (Test 2). A sharp increase in the T d from 352 to 383 °C confn-ms this

improvement in thermal-oxidative stability. However, a significant degree of instability still remains. Again, the IR

and NMR spectra are informative.
The IH NMR spectrum of the fluid as received (Fig. 11), shows the typical doublet centered at 5.85 ppm

due to the presence of the hydrogen-terminated chains. The absence of protons in the treated fluid is shown by the
1H NMR spectrum presented in Fig. 12 (800 scans). Loss of C-H absorption is also observed in the 3000 cm "1

region of the IR spectra. The 19F NMR spectrum of the AB fluid (Fig. 13) is essentially identical to that of AC fluid.
However, here the resonance at -76.6 ppm is just barely visible as a shoulder. The assumption that this resonance

may be due to the impurity causing the fluid's instability is supported by formation of a significantly smaller

quantity of volatile products (a measure of the degradation extent) in the AB fluid (Test 10) compared to the AC
fluid (Test 5) for treated materials. Again, IR and NMR spectra indicated that the residual instability is not due to

the presence of hydrogen-end capped impurities.

CONCLUSIONS ANDSUMMARY

Thermal oxidative treatments of poly(HFPO) fluids AC and AB were effective in removal of the proton-

containing impurities. The treatment, however, failed to render the fluids stable in oxidizing atmospheres and

elevated temperatures (316 °C) in the presence of a titanium alloy, although the degree of degradation was reduced.
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TableI

THERMAL OXIDATIVE TREATMENT OF POLY (HFPO) FLUIDS _

Test Fluid Quantity, Temper- Time, Metal coupoa Weight loss Volatiles Vir,o_Ry 2

number type g rare hr
oC g mg/g mg mg/g 100 °C,

cSt

1 AC 4.99 316 24 Ti(4AI,4Ma) 0.99 198.4 1154.4 230.5 3N.D.
2 AB 5.15 316 24 TI(4AI,4Mn) !.28 248.5 1425.0 276.7 N.D.
3a AC 28.13 343 192 NONE 1.03 36.6 1227.4 43.6 N.D.
4a AC 28.05 343 192 NONE 1.17 41.7 N.D. N.D. N.D.
3b AC 27.10 343 96 NONE 0.12 4.4 58.5 2.2 23.16
4b AC 26.88 343 96 NONE 0.09 33 63.2 2.4 N.D.
5 AC 3.07 316 24 Ti(4AI,41ffm) 0.31 101.0 412.7 134.4 N.D.
3c AC 19.11 316 72 M-50 0.30 15.7 366.9 19.2 22.82
4c AC 26.84 316 72 M-50 0.12 4.5 !15.4 4.3 N.D.
6 AC 1.84 316 24 TI(4AI,41Vln) 0.22 119.6 291.5 158.4 N.D.
7 AC 1.87 316 24 TI(4A1,4Mn) 0.31 i 65.8 347.8 186.0 N.D.
8a AB 29.81 343 257 NONE 1.08 36.2 1207.9 40.5 N.D.

9a AB 31.11 343 257 NONE 1.02 32.8 N.D. N.D. 8.92

8b AB 28.73 343 96 NONE 0.10 3.5 57.3 2.0 N.D.
9b AB 30.09 343 96 NONE 0.09 3.0 69.5 2.3 N.D.

10 AB 2.03 316 24 Ti(4AI,4Mn) 0.12 59.1 111.1 54.7 N.D.

tAll tests were lmrfocmed nt m mnmlgte_ of IX_ oxygen (approximately 5.3x!0 t Pa) at the denoted temperanne and period of time.
2Vi.ux_ity at 100 oC after test Viscvaity of AC (Batch 53538-29-2) as received was 22.60 cSt at 100 *C. Viscosity of AB (Batch

42420-13) as received was 8.86 cSt at 100 "C.
3NJ). ffi Not Dyne.
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pretreatment.
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Figure11, 1H NMRof AB fluid (asreceived).
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